Einstein's Objections to Quantum Mechanics Get Industrial Confirmation in New Energies
Third of Three Tributes to Albert Einstein
DENTON, Texas, May 28, 2019 /PRNewswire/ -- In the preceding releases, dated May 20 and May 24, 2019, we outlined studies by the Italian American scientist Sir Ruggero Maria Santilli (http://www.i-b-r.org/Dr-R-M-Santilli-Bio-1-10-18.pdf) and other scientists on the apparent confirmation in physics and chemistry of Einstein's argument that quantum mechanics is an 'incomplete theory.' In this news release, we outline studies on the need for a 'completion' of quantum mechanics for consistent treatments of new clean energies and basically novel technologies.
Santilli states: "I never accepted quantum mechanics as a 'complete' theory because quantum mechanics has 'no time arrow' and, therefore, cannot consistently represent irreversible energy releasing processes. After learning during my graduate studies that quantum mechanics is characterized by time reversal invariant Lie algebras, I did my Ph. D. thesis in 1965 on their 'completion' into irreversible Lie-admissible algebras (http://www.santilli-foundation.org/docs/Santilli-54.pdf) with related irreversible dynamical equations."
Following various academic positions, in September 1978, Santilli joined the Department of Mathematics of Harvard University under DOE support to conduct innovative research in new clean energies. In that context, Santilli introduced the most general known realization of irreversible Lie-admissible algebras characterized by generalizing and differentiating the conventional product "ab" between number, functions, into the product of a and b to the right, a>b = arb, from the product of b and a to the left, a<b = asb, where r and s are arbitrary, positive, numbers, functions or matrices. The new multiplications, permitted the construction of new mathematics known as 'hadronic mathematics to the right and to the left',' with corresponding 'completion' of quantum mechanics and chemistry into irreversible coverings known as hadronic mechanics and chemistry, where energy releasing processes forward in time are represented with ordered products to the right, while processes backward in time are represented with ordered products to the left. Different values of r and s assure irreversibility. Scientific and industrial applications to new clean energies were initiated only thereafter. The reversible isomathematics, isomechanics and isochemistry used in the preceding two releases are recovered for r = s= T > 0. Quantum mechanics and chemistry are recovered identically for r = s = 1 (http://www.santilli-foundation.org/elements-hadronic-mechanics.htm).
Santilli states: "I believe that our inability to achieve controlled nuclear fusions despite the investment of billions of public funds is due to inconsistencies in their treatment with time reversal invariant 20th century sciences. By contrast, at the U. S. publicly traded company Thunder Energies Corporation (http://thunder-energies.com/), we are attempting nuclear fusions that, when represented with the new irreversible sciences, appear to have no harmful radiation or waste (http://www.santilli-foundation.org/docs/hypercombustion-2019.pdf)."
When asked how irreversible processes may verify Einstein's argument, Santilli states: "It appears that Einstein's objections to quantum mechanics are verified in the scattering region of ongoing high energy particle collisions. Quantum mechanics is valid during the acceleration of protons in hadron colliders. However, quantum mechanics cannot be valid at the impact of protons against a target due to the irreversibility of the scattering. Einstein's argument appears to be verified in the interior of high energy scattering regions due to their extreme densities approaching that of black holes under which quantum uncertainties and other laws are clearly inapplicable. The importance of Einstein's argument, as well as its lack of general acceptance by the academic community for about one century, are illustrated by the need for a revision of 'experimental results' in high energy scattering experiments due to currently missing irreversible contributions."
Contact: Paul Knopick
E & E Communications
pknopick@eandecommunications.com
940.262.3584
Share this article